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Abstract
It is shown that: If (Xl’ Xz) is a permutation invariant central convex

unimodal random vector and if A is a symmetric (about 0) permutation
invariant convex set then P{(axl, ?) e A} is nondecreasing as a varies from
0+ to 1 and is nonincreasing as a varies from 1 to « (that is,
P{(alxl,azxz)eA} is a Schur-concave function of (log ays log az)). Some
extensions of this result for the n-dimensional case are discussed.

Applications are given for elliptically contoured distribution and scale

parameter families.
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1. Introduction and motivation

Let X = (Xl,...,xn) have a density function f which is absolutely

continuous with respect to the Lebesgue measure and denote, for a; >0, 1=
1,...,0,
(1.1) D_(a) = (5:'xi| <ag, = 1,000},
2
(1.2) D,(a) = {x: }(x;/a;)" < 1}

the n-dimensional rectangle and ellipsoid (which depend on the vector
as= (al,...,an)) respectively.

A function ¢ 1is said to be Schur-concave in a (respectively

a2 z (a%,...,aﬁ)) if y(a) < y(b) whenever a» b (respectively a2>- 32)

where X denotes the majorization relation; see, e.g., Marshall and Qlkin
(1979).
[t is known (Tong (1982)) that if f(x) 1is a Schur-concave function of

X then P{X eV _(2a)} (respectively, P{X ¢ Dz(i)}) is a Schur-concave
function of a (respectively, _3?)

of the elements of a and g? when the arithmetic mean is kept fixed.

« Such a result depends on the diversity

Since the volumes (Vol) of D_{a) and Do(a) are multiples of
n )
noay, it follows that if a » b [ad>- 02] then
i=1 - - 0 =
Vo](Dm(g)) < Vol(Dm(g)) [Vol(DZ(g)) N VO](DZ(B))] with strict inequality

if Eﬁgf] is not a permutation of 3[12]. Consequently, in the

inequalities
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{3
5; the difference in probability contents could be partly due to the difference
" in the volumes of the two sets. In view of this fact Perlman (1982) suggested
My
%; ’ that a corresponding result will be of interest if the volumes of the sets are
'y
2 kept fixed. This can be accomplished by inequalities via the majorization
:;.‘!
i 1 1 > (log b log b
é: (Vog ) se00,109 an) (tog 12e-e»109 n).
B
. Such a majorization inequality depends on the diversity of the elements of
EX
gg a and a? when the geometric mean is kept fixed.
A\
5; In this paper we derive such an inequality for a large class of density
1 functions and a larygye class of convex sets. OQur most general results are
e
given for the bivariate case. An extension to the n-dimensional case appears
?‘ to be difficult [for reasons to be discussed in Section 3] except for some

special cases such as the case of independent identically distributed random

variables or when the underlying joint density is spherically symmetric. The

0

:é class of convex sets considered includes D and D, as special cases and
0 : special applications are given for elliptically contoured distributions and
gﬁ scale parameters families. In all these cases, universal upper bounds on the
‘ probability contents can be given by substituting the values of the a;'s by
e their yeometric mean.

3

iﬂ 2. The inequalities.

;é Before proceeding we first show that the condition of Scnur-concavity is
aé no lonyer adequate for the problem under study.

Example 2.1. Let X = (Xy, X,) have the uniform density over the region

‘. T N CRORTE Y R g
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3 . -
3 {(xqs x5): |x1 x2| <4, 2« |x1 + x2| < 4}
0
- (which is a Schur-concave function of x). Then the probability content of
N -
o Dm(g) is zero for a = (1,1) and is positive for all a satisfying
IS |
g a =3, £ 1.
M In order to derive our inequalities we recall the following
i)
;‘ definitions. For two vectors x and y write x >t y 1if x and y agree
' 2 L x Y z N
. in all but two coordinates, say i and j, i < j, X; < X5 and Yi = %
'90
ﬂ and Yj = Xje
g
B4
‘ Definition 2.2. Let a = (al,...,an) where a1 < a2 X ees € an. We say that
D)
| a function ¢(a, x) is decreasing in transposition (DT; see Hollander,
X 3, X
f
by
) Proschan and Sethura. 3n (1977, 1981)) or arrangement increasina (Al; see
. Marshall and 0lkin (1979, Section 6.F)) if
0 (a) f(am, xit) = f(a,x) for all permutation matrices i and vectors
[
h x and a as above,
and
'
¥
Qf (b) f(a,x) » f(a,y) whenever X >t Yo
i}
The followiny result plays a key role in the subsequent theorems.
ft
.
h
“ Theorem 2.3. Let (Xl"“’xn) have a density f and.let A be a subset
- of RM., If f and IA (the indicator function of A) are such that
U
X X X X )
5 f(—1 51) and 1, (d—l veess = are AL din o a e (0,@)" and x a7,
4 4 n ! n -
1]
K X1 Xn '
" then P{(a— veees a_) e A} is Schur-concave in (loy al,...,h)g ap) Dheed,
. 1 n
'0
o X X X X
:\ P{(—l seany d—n) £ A} « P{(,—)‘l yeoesy B—n\ . A} wheneyer
s 9 n "1 n

Y - -
-

.
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o . (loy al,...,log an) > (log bl""’ log bn)].
Proof. Let ¢ and ¢ be two n-variate real functions such that

i X1 X

A gl(al,...,an; xl,...,xn)

Gk

is Al on (0,»)" xR

? and

]
<=

e 9y (XyseeesX 3 2)500052) =

o
) Then

! (2.1) 9(@sb) = [ eee [ 9)(asx) gylxp)ax

!" -00 - Q0

is Al on (O,eo)n x (O,m)n . The proof of this statement is the same as the
0 proof of 6.F.12 of Marshall and 0lkin (1979) except that two of the R™'s there
4

k: are replaced by (O,w)n. Substitute y; = xj/b;j in the inteyral in (2.1)

to see that the function g in (2.1) is of the form

s n
o (2.2) g(a;p) = (m

. To.see it write

ﬁ(gﬁg) =( I bi)_l g(a;b). Since y(a;b) 1is Al it follows from Lemma 3.1 of
-1 a0

I N
;(ﬁ: Hollander, Proschan and Sethuraman (1977) that h(a:b) is Al on
0 a.D

4 (0,=)" x (0,=)".
ah bl b,
Since h(—,...,—) 1is Al on (0,=)
o ° %
Wy Marshall and Ulkin (1979) [replacing one of the R's there by (0,=)] that

" % (0,%)" it follows from 6.F.6 of

¥ X 1 : L / O AN {)
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h(e “/e ",...,e /e ) is Al on R". Thus, from 6.F.3.a of Marshall and
0lkin (1979) it follows that h(ecl,...,ec”) is Schur-concave in ¢ ¢ R™.
That is, the function h(cl,...,cn) of (2.2) is Schur-concave in
(log cl,...,log Cph)e

Denote

® > xl *n
X(i) = {w "'_;{0 ¢('a_19"'9'é_n') w(Xl,---,Xn)dl

Put by = «ee = by =1 in (2.2) to obtain y(a) = h(ail,...,an'l). Since
h(a) is Schur-concave in (log A]seeesl0y a,) it follows that also
x(2) 1is Schur-concave in (log @15+.., 109 a,). Theorem 2.3 now follows by
setting ¢(x) = f(x) and y(x) = I,(x). |
A natural question to ask is how the Al property of Theorem 2.3 is
realted to more familiar and easily checked conditions such as unimodality and

Schur-concavity. To answer this we recall some definitions from Dharmadhikari

and Jogdeo (1976).

Definition 2.4. A random vector X (or its distribution) is called central

convex unimodal if its distribution is in the closed convex hull of the set of

all uniform distributions on symmetric compact convex bodies in RN

N e

Definition 2.5. A random vector X (or its distribution) is called nonotane

unimodal if for every symmetric convex set C e R" and GVErY o 1, the

quantity  P{X ¢ C + kx} 1is nonincreasing in k » U.
[f X has a density f and is central convex unimodal then the set
{x:f(x) > u} 1is convex and symmetric, that is, X is unimodal according to

Anderson (1955). [t is well known (see, e.q., Dharmadhikari and Jogdeo

v TS T AT T R R
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."'
é (1976)) that every central convex unimodal random vector is monotone
.l
’ unimodal. Wells (1978) showed that there exist (in R2) monotone unimodal
b
3] random vectors which are not central convex unimodal.
o
2
W

Theorem 2.6. If (Xl’ X2) with a Schur-concave density f(xl,xz) is
l
;; monotone unimodal, if f(xl, - x2) is Schur-concave and if A ¢ RZ is
)
a measurable symmetric (about 0) permutation invariant and convex, then
) X X -

P{(—l-, —g) e A} is Schur-concave in (log a,, log a,).
3 a, 1 2
»
! Remark 2.7. Dharmadhikari and Jogdeo (1976) showed that every monotone
L
" unimodal random vector is symmetric (about Q). From this it follows that the
.I
'f Schur-concave density f in Theorem 2.6 is symmetric not only about
X X

“ oy = : - (12,
. {(xl,xz).x1 x2} but also about {(XI’XZ)' X)X, 0}. Thus fkal, 32}
. cannot be Al in a ¢ (O,m)2 and X ¢ RZ. However the restriction of f to
K
% {(xl,xz): Xp+ X, > 0}, or equivalently the conditional density of
Ly
.l
:' (xl,XZ) given that X; + X, > 0, can be Al (see proof of Theorem 2.6 below)
M)

and this suffices to yield the conclusion of Theorem 2.6.
il
K
3
ﬁ Proof of Theorem 2.6. lLet A =An {(xl,xz): X1 + Xy > 0}. It will be shown
€
A

that P{(:— X, L x)) ¢ A|x, + x, 5 0} wnich is equal to
. a, 1'a, "2 1 2
g 1 2
X (2.3) PO X, 1) e Afx, + x5 03
h ‘ 3 1° a, 2 1 2
N is Schur-concave in (loy a;, log a,). Theorem 2.6 then follows trom the
(N ”
y symnetry of f(xl,xz) about {(xl,xo): Xt Xy = 0}; see Remark 2.7.
- Let B = {(xl,xz): X+ ox, > 0}. To prove that (2.3) is Schur-concave in

(loy a,, loy a,) it sutfices, by Theorem 2.3, to show that
1 2

v

v 00 A
RN IR0 'l'!'."li.'n'-
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7
¢
i
y g(xl,xz) = 2f(x1,x2) IB(XI’XZ) and I, (here [, and Ig are the
- A A

. indicator functions of A and B) satisfy
)
' X X. .
Z (2.4) g(z=, z2) is Al in a e(0,®)2 and x ¢ R?

1 2 N
{
+
i and
‘!

X X, .
; (2.5) 1.z, =5 is AL in a e(0,%)°% and x « k%
* A"l 2
A
4
!
! Only the proof of (2.4) will be yiven. The proof of (2.5) is similar. To
f prove (2.4) it suffices to show that
L)
: (2.6) f(clxl,czxz) < r(cle, CIXZ) whenever Cp > ¢y > 0 and SRR d.

Fix Cp > Ca > 0. First we prove (2.6) wnen Xy > Xy 2 0. Denote
CXy%C04
= " . - \ . .
(yl,yz) S, ‘CZ‘I’CIXZ) and note that (clxl,czxz, )-./1,12) and
; that ¢ xy + Coxpy > Coxp + )%y, Thys
H
;
T(Clxl, c2x2)
: . T(XI,JZ) {0y Schur-concavity,)
? SRACPE SR (ay H0noTone untmodaling,’
'
as was to be shown.
flow assume x; U o> X (and LTI J)e LinZe iy ,en) is conotone

) unimodal it follows that (Xy,-4,) is monotone uniiodal.,  [ts density n o is
; yiven by h(xl’XZ) = f(’(l"x?.’)' Sy assumptinn, the sty ofr (Y\“-Yf,) 15
[} L <
i

Schur-concave. Hence, it tollows tram the preceding jroument that when

A R R Al S N ST VTR L SR U N R S0 1 SA P 2N, L, e A 1"‘
i ‘ﬁ“n > 4,03,V P ' 8, !‘h“". 'a~“ 5 .lu oy 5‘! w,C'.r “i.l'w . u\lol‘ﬁ. ». 4% ‘!.' “!v.'l. Y

L]




that is,

f( ) < f(c

C1X1:C0%2 2X1°C1%0) >

as was to be shown.

When x, » Xy > 0 (and X] + xp 3> 0) it can be shown as above that

[t is known that a permutation invariant, central convex unimodal density

(2.6) holds.

is Schur-concave (see, e.g., Marshall and Olkin (1974) or Tong (1980), p.
108). Also it is clear (usinyg Remark 2.7) that (xl,xz) has a permutation
invariant central convex unimodal density if and only if (Xl"xﬁ) has. Thus

we obtain the following result as a corollary of Theorem 2.6.

Theorem 2.8. If (XI’XZ) has a permutation invariant central convex unimodal

density and if A € R is measurable symmetric (about Q) permutation
X X.

invariant and convex, then P{(Elu EEJ ¢ A} 1s Schur-concave in
1 2

(Tog a;, log a2).

Remark 2.9. Note that the class of density functions fand subsets) in Theorem

2.3 i1s a proper subclass of Schur-concave function (and subsets). The
additional condition there seems to be symmetry (about J) and unimodality, and
the latter is not met for the density in Example 2.1.

o4
If x = (Xl""’xn) has a density of the form f(x1,...,xn) = g . x;)
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)

:

Y (that is, X s spherically symmetric] and if y is nonincreasing then X is

central convex unimodal. In this case, for a particular «ind of sets A We

'

can extend Theorem 2.3 to the n-dimensional case {n > 2}

A Y

Plabl St B2 BRAR

Theorem 2.10, If X = (Xl,...,xn) has a density  of the torm fix} =

] n -
9 N - ;- * N - - . > "
: g(.z Q(Xi)) for some nonincreasing  dand it A i of the Tarn
‘ 1=1
e n
A= {x: w(xi) < A} for some x> U wnere . amd . are non-neagative,
R i=1 _
4 symmnetric about 0, convex and nondecreasing on l,er, " ten
) Xl Xn
L P{(—= ,ee., —) & A} 1s Schur-concave in (l0y dv,eee, o o,
(n a a .
; 1 n
" Proof. [t is possible to prove this result by Showing airecil, ,:$ i Ine
[ proof of Theorem 2.6) that the conditional density or & .rvven a0 o)
, n AERT
B . I 5 - - Sty o 3
- and the indicator function of A g {x:  x. > J} <atis37y "he conaition of
- i=l
" Theorem 2.3. However here we use a conditigning arament o Serive Tne
. desired result from Theorem 2.3.
>
3 . . . P . = v . =
) First notice that it suffices to prove the SCnur-Loncivity oi
: X1 Xn . . !
Pl eeesz) € AL in (log @y, ..e,005 3g) by fixing as,ee.iny and snowing |
1 n ;
L that this guantity is Schur-concave in {10y ay, log ay,.
! For fixed Xg,eee5%, and Qag,...,3,, consicer
x X, X X
. 1 2 n V _ .
. (2.7) P{(a——, FUCRARE 3—) £ n|\(3 T XL s e, {"'1 =
; l 2 (n s
r
>
x wnich can be written as
- X < X X
. 1 2. ~ 3 n. .
. Pl{—, =) = i {—veee,—1},
4 d a . d
Y 1 2 9 i
)
4
. where
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10
R(ygseeesdn) = {(x]0x5) 1 (X{3X55Y3500055,) € A}
n
= Uxpx,) s wlxg) +oulx,) <x - ) wly)l.

i=3

The conditional density of (Xl,Xz) given X; = x;, i=3,...,n, is of the
form h(¢(x1) + ¢(x2)) where h is nonincreasing. Hence it is permutation

X X
. . . n
invariant central convex unimodal. Also, KLQE,...;—-

a a
3 n
symmetric permutation invariant and convex. Hence by Theorem 2.8, the

) is measurable

quantity in (2.7) is Schur-concave in (log ay, 109 a,).

The family of functions which are Schur-concave in (log a, log a2) is a
X X
convex cone, hence the unconditional probability P{(El,...,EEO e A} s
n

Schur-concave in (log aj, log a,). ||

Remark 2.11. The assumption that X is absolutely continuous in Theorems

2.6, 2.8 and 2.10 is not essential. [If X does not have a density then it
can be approximated by a sequence of absolutely continuous random vectors
which have the required properties (such as symmetry about 0, permutation
invariance and unimodality) and the conclusions of Theorems 2.6, 2.8 and 2.10

will apply to X by weak convergence.

o

X X
Remark 2.12. Since P{(Elw...,sﬂd e A} 1is a Schur-concave function of
1 n
(log al,...,log an) if and only if P{(alxl,...,anxn) e A},
" 21 1
P{(Xl""’xn) € A(al,...,an)} and P{Xl,...,Xn) £ '(5_“ .,E—J} are

1 n
(where A(al,...,an) = {(alxl,...,an n): (xl,...,x £
under the conditions of Theorems 2.3, 2.6, 2.3 and 2.10 (see also Remark
2.11), all these probability contents are Schur-concave functions of

(loy al,...,log an) -

v, . . ?, . EYATMV WA . %Y &
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3. Some applications.

In this section we study some applications of Theorem 2.3 and 2.10 and

discuss the possibility of n-dimensional generalizations (apart from Theorem

2.10).

Application 3.1. A class of convex sets which is of special interest is of

2

the form A = {(xl,xz): ) ¢(xi) < A} for some A > 0 and a function
i=1

which is nonnegative, symmetric about 0, convex and nondecreasing on {(,»).

In particular,

>
&
—
o
-
Pal
n
~no

TR0
,"',P.),\/’..."Q,

are in this class.

Karlin and Rinott (1983, Theorem 24) snowed, amony otner tningys, tnat 17t

-

the nonneyative random vector X has a Schur-concave density ¢ <ren

X
2 Ve D

1 .
(3.1) P{( e £ O

R-TV7<"
1 4

is a Schur-concave function of (al,az) [ai>0,i=l,2 for < » 1. 4 related
question is whether or not
X1 X

(3.2) P“?’

~No

) € Dk}g K = 2’19693s ey

[+%]
~N

are Schur-concave function of (log ay,l0y a,). A siuple wodification of
Example 2.1 [considering the conditional distribution of (xl,xz) there, yiven
b
Xl > 0, L

concavity of f alone. However, Theorems 2.3 and 2.10 say that under the

» 0] shows that the answer is no under the condition of Schur-

r

' - . P 7 ) A BCSODOAOAOHARONS aeh 5ty
IR A R AN RN 1 DS DA A ISR N I
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(stronger) ~onditions of symmetry and unimodality of f, the answer to this
question is positive. Notice that, by Marshall and Olkin (1979, page 63,
Table 2, (vi)), it follows that Schur-concavity of (3.2) in (log al,log a2)
implies Schur-concavity of (3.2) in (ay,a,) Laj > 0, i = 1,2]. The Schur-
concavity of (3.2) in (al,az) is a stronger property than the Schur-concavity
of (3.1) in (al,az) for k = 2,4,6,8, ..., » (again apply (vi), Table 2, page
63 in Marshall and 0lkin (1979)).

Application 3.2. (Elliptically contoured distributions). If f is of the

form f(xl,xz) = g((xl,xz)z'l(xl,xz)') where g 1is nonincreasing and

L= ) has equal diagonal elements and is positive definite, then the

oij
conditions on f in Theorem 2.8 are satisfied. Thus, inequalities can be
obtained through the Schur-concavity property in (log a;, log ap). In
particular, when combining with Application 3.1, one has the following
result: If (Xl’ XZ) is elliptically contoured distributed then, for D

@

and D, defined in (1.1) and (1.2),

PL(X),X,) €D (a, %)} and  P{(X{,Xy) € D,(a, %)}

o)
are decreasing as a varies away from 1. Consequently, when the area of such a
rectangle (or ellipse) is fixed, then the maximum probability content is

obtained when the rectangle becomes a square (the ellipse becomes a circle).

For D_ this result has been obtained by Kunte and Rattihalli (1933).

Application 3.3. (Scale parameter families). Let ¢ = (ul,v?),

b; > 0 (i=1,2), be a parameter vector and let (YI’YZ) have density

_ -1 . o
gg(yl’yZ) = (0102) f(yl/ol’ y2/92). If f and A satisfy the conditions

e A} 1is a Schur-concave function of

in Theorem 2.8 then P{(Yl,Y

)

- g o . ’ 3 - 3 " » LW Ve 3 P N o Ve e SR
e N R DL DR OATIDE OO O M NS X M M DL 5 NN SO M 0 \M&i\{d
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O (loy 6, Toy 8,).

o Application 3.4. (Peakedness in bivariate distributions). If f(xl,xz)

3 satisfies the conditions in Theorem 2.8 then, for a; > 0 (i=1,2),

2

. P{| ) aixil < A} is a Schur-concave function of (log ay, log a,) for all
5 i=1 2

ﬁ:i x> 0; that is, if (log as log az) > (log bl’ log b2) then
o 2 i=1
o more peaked than ) bixi' This result is to be compared with a result of
[ 34 1=1 n

Proschan (1965) who showed that P{’ y aixil < A} is Schur-concave in a
s i=1

3 whenever X,,...,X, are independent with a common symmetric (about 0) log-

N

a.Xx. is
i7i

nit-

o concave density.

o Application 3.5. (Multivariate normal distributions). Let X be an n x 1

random vector distributed as Nn(g,:). Das Gupta and Rattihalli (1934)

i considered the prodlem of selecting the region of laryest confidence level for
afq -~ u from all reygions of fixed Lebesyue measure, based on a single

3 opservation X, I beinyg a known positive-definite matrix. [f une restricts
attention to the class of translation-invariant reygions then, it follows from
Mo Neyman-Pearson lemna, that such an optimal region is yiven by the correspoding
concentration ellipsoid. Das Gupta and Rattihalli (1933}, nowever, focused

their attention only to a class of rectangular regions of fixed volume. In
n
?

. . . . n .
a& particular, they showed that if » = 471 then, subject Zo0 i a; = o (c is
o) iz
[ . . s \ . R
fay a constant}, the pronability 204 - J (a'} is maximizad wnen = ...,
al w ‘

{ ] /
: n . - . ] , .
~ - . = C 3e thrs fact tulluws also rrom Tneorom 2010 and not Just for tne
“
5! rectangular rejton J a) dut also tor the elliptical region J,{a).
) o - . —
o:c' ) 2 9 ' n
o hen = d]dg(gl,...,J') then, s.ibject to i a, = ¢, the
» " i=1
Tas prodabilities (¢ « 0 (d)}:, & = 2,0,000,2, are taximized when a; = oia*
i n l I /n

- / . IS - .
3 where a* = c{ i o,) . This result Tor the case « = » has also been
:4:' 1=1
:ﬂ‘:'o
o
T
L)
o8

-

B O A N N o AT 2 NN A AT A o ot AU o A0 3350
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obtained by Das Gupta and Rattihalli (1984).

It is interesting to observe a difficulty for yeneralizing Theorem 2.8 to

the n-dimensional case. For proving results concerning Schur-concave density

functions (or random variables) one property is that: If the density

f(xl,...,xn) of (Xl"'°’xn) is a Schur-concave function of (xl""’xn)

then the conditional density of (Xl,Xz) given Xi = X§» i=3,...,n, 1is a

Schur-concave function of (xl,xz) for every fixed

(X3s00esXp);

consequently the proof can be given for n = 2 first and then unconditioning

as in the proof of Theorem 2.10. But in the current problen the symmetry

condition (about 0) of f(xy,...,x,) does not yield the same property (hence

we cannot justify (2.6)) for the conditional density of (X1,X2) given

(X3,...,Xn). Thus we do not yet know whether or not the following conjecture

is true:

Conjecture. For n > 2, if f(x;,...,x;) [the density of (X;,...,X3)] is

permutation invariant and central convex unimodal, and if A€ R" is
measurable, symmetric about 0, permutation invariant and convex, then
X Xn
P{(— )

seosy e A} is a Schur-concave function of (log a1,..0, 109 a,).
a1 arI n

To remove the difficulty mentioned above one can, of course, consider the
case in which Xl""’xn are independent and in which (as in the proof of

Theorem 2.10) K(x3,...,xn) is symmetric about (0,0) and convex (such as

n

the class of convex sets (x: L x].k <1} for k =2, 4, 6, 8,cce,°).
i=1

n are independent identically distributed random

In
particular, if xl,...,x

variables whose common density is Symmetric about 0 and log-concave, then

the conditional density of (xl,xz) given (X3,...,Xn) satisfies the

conditions in Theorem 2.8. In this special case, if the set A depends on

(X{seeesxy) only through (|x1|,...,|x”|), then inequalities for

- v h £l .
» ; ‘ DO DA Cho ke qRa T, > il
.")q' .‘1‘.,]9“,\‘ b ‘0’=t"l‘.‘_’uf“1!\'(&“0’"?’*"; b 2 ',.'.!. ‘f“’ﬁ‘“!‘ ‘vi' ““‘!.‘J'Ii h.n.o.J"..h' (g fige i N
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[ X X

Kok P{(E%,...,Eﬂd ¢ A} can be derived by applying either Theorem 2.8 or
n

A, Proposition 11.E.5.e of Marshall and 0lkin (1979). In particular, if

st ' Xl,...,Xn are independent, identically distributed normal variables with
h%; mean 0, then the probability contents of D_(a) and Dz(g), defined in
.Sﬁw (1.1) and (1.2) are Schur-concave functions of (log a1,..-,109 a ). The

‘éh. latter is the Okamato-Marshall-Olkin inequality (Marshall and Olkin (1979, P.
Py ~’ 303) ) L4

'
-
" A

{ .
Nl ol

s

i

o,
S

-
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